

Bi-weekly Colloquium

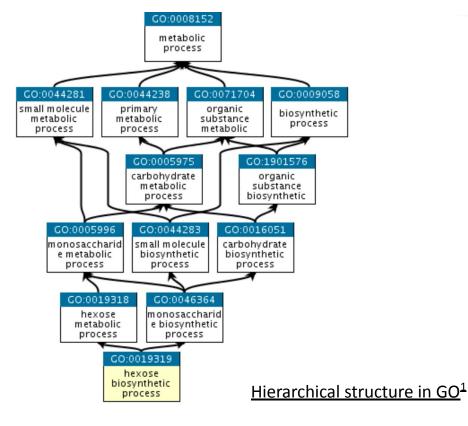
Özge Erten Institute of Data Science - Maastricht University 17 February 2023

Introduction

Problem

- For many genes, information such as their functions and locations are lacking to understand of the mechanisms of disease.
- Significance
 - GO and GOA information were used in analyzes such as gene enrichment and gene pathway, to understand the functional roles and relationships of genes within a biological system.

Hypothesis

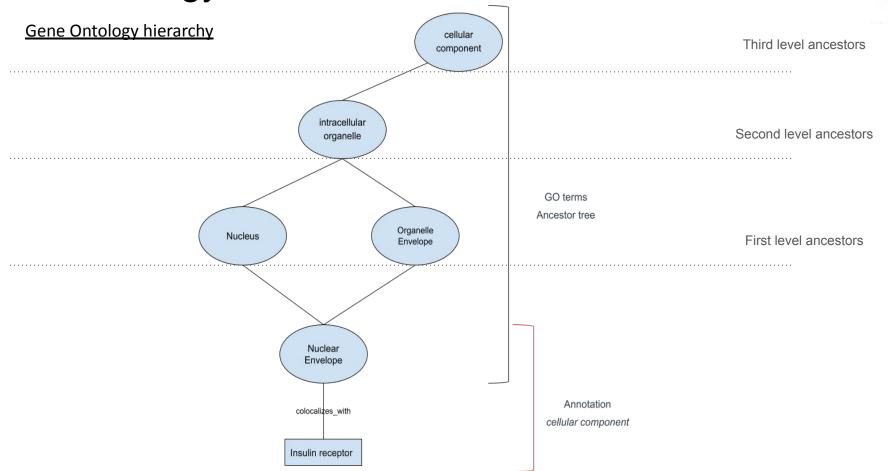

• We think that incomplete gene annotations can better predicted if the GO hierarchy were incorporated in a machine learning model using True Path Rule.

Gene Ontology - GO

Gene Ontology nodes are called 'GO Terms'

3 ASPECTS: Molecular functions Cellular components Biological processes

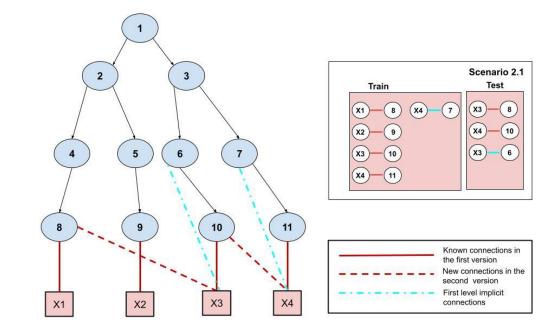
Gene Ontology Annotation - GOA



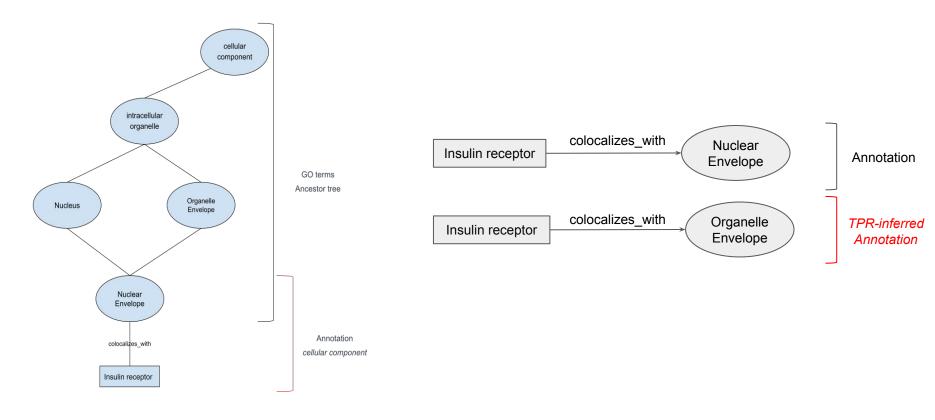
Information in GOA

Gene Ontology Annotations relate GENE PRODUCTs to GENE TERMs

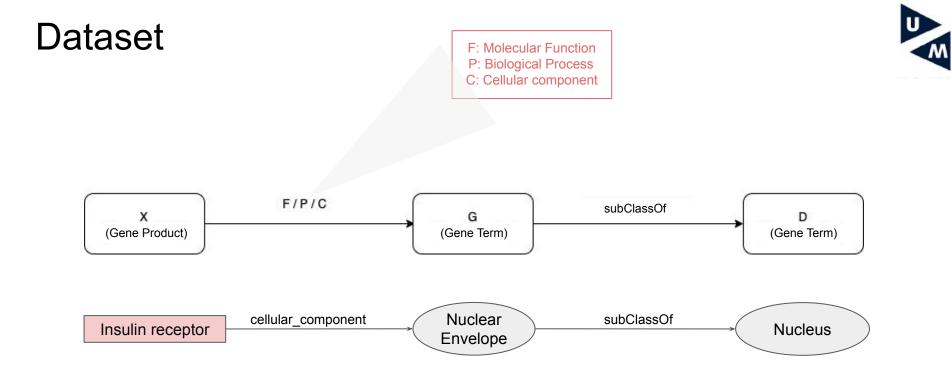
Methodology



Methodology <u>True Path Rule</u> cellular Third level ancestors component intracellular Second level ancestors organelle GO terms Ancestor tree Organelle Nucleus First level ancestors Envelope colocalizes with colocalizes_with colocalizes_with colocalizes_with Nuclear Envelope Annotation colocalizes_with cellular component Insulin receptor



Train, test and validation sets structure


- Scenario 2.1

For instance,

Knowledge Graph Embeddings (KGEs)

• Typically, KG embedding methods embeds entities and relations onto a vector space directly where each triple (head entity, relation, tail entity) in the KG is assigned a score based on its validity.

In TransE embedding; If a fact (*h*,*r*,*t*) holds, then *h* +*r* should be close to *t* If not, *h*+*r* should be distant to *t*

Entity and relation space in TransE²

If a knowledge graph schema contains hierarchy; hereditary features can be incorporated in a

machine learning model

- Hereditary features: The properties or characteristics that an entity inherits from its ancestor entities in the hierarchy.
- True Path Rule is one of the methods to identify implicit hereditary relations.
- These inferred relations can be used to increase samples in the training and test sets.
- With this way, it's possible to improve the performance of the link prediction model by introducing more positive samples.
- → To further capture and embed the TPR, we generate and incorporate samples using the TPR in the training data.
- \rightarrow We refer this method as TransE+TPR.

Experiments

Datasets triple counts

	GOA18-19	GOA19-20	GOA20-21	GOA21-22
Train set	48.924	35.304	29.332	24.948
Valid set scenario-1	3.457	593	871	831
Valid set scenario-2.1	14.310	7.051	4.797	2.869
Valid set scenario-2.2	29.241	16.106	10.304	5.829
Test set scenario-1	3.458	593	872	830
Test set scenario-2.1	14.310	7.052	4.797	2.868
Test set scenario-2.2	29.241	16.106	10.304	5.829

		TransE		TransE+TPR	
	Scenario	MRR	Hits@10	MRR	Hits@10
GOA18-19	sc-1	0.0321	0.0933	0.2552	0.5857
	sc-2.1	0.0397	0.0981	0.1347	0.4186
	sc-2.2	0.0505	0.1098	0.1692	0.6100
GOA19-20	sc-1	0.0478	0.1433	0.1971	0.4849
	sc-2.1	0.0338	0.0927	0.2021	0.6800
	sc-2.2	0.0438	0.1080	0.1967	0.6609
GOA20-21	sc-1	0.0518	0.1439	0.1807	0.4738
	sc-2.1	0.0441	0.1132	0.2340	0.7066
	sc-2.2	0.0501	0.1376	0.1589	0.5674
GOA21-22	sc-1	0.0396	0.1126	0.1387	0.3762
	sc-2.1	0.0426	0.0990	0.1669	0.5207
	sc-2.2	0.0466	0.1149	0.1711	0.5700

Thank you!

References

1 - Kulmanov, M., Smaili, F. Z., Gao, X., & Hoehndorf, R. (2020). Machine learning with biomedical ontologies. biorxiv.

2- Gusmão, A. C., Correia, A. H. C., De Bona, G., & Cozman, F. G. (2018). Interpreting embedding models of knowledge bases: a pedagogical approach. arXiv preprint arXiv:1806.09504.