Knowledge Graphs

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d'Amato, Gerard de Melo, Claudio Gutierrez, José Emilio Labra Gayo, Sabrina Kirrane, Sebastian Neumaier, Axel Polleres, Axel-Cyrille Ngonga Ngomo, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, Antoine Zimmermann

KnowGraphs Colloquium

November 27, 2020

Knowledge Graphs

- Tutorial paper
 - Comprehensive introduction to multiple research areas
- Focus of this presentation
 - Data Graphs

Data Graphs

э.

・ロト ・ 日 ト ・ 目 ト ・

2

- Graph Models
 - Directed edge-labelled graph
 - Graph dataset
 - Property graph
- Querying
 - Query languages (e.g., SPARQL, Cypher, etc.)
 - Graph patterns
 - Complex graph patterns
 - Navigational graph patterns

Definition

Let *Con* be a an infinite set of constants. A directed edge-labelled graph is a tuple G := (V, E, L), where $V \subseteq Con$ is a set of nodes, $L \subseteq Con$ is a set of labels and $E \subseteq V \times L \times V$ is a set of edges.

- V: set of nodes representing entities
 - e.g., Arica, Santiago
- E: set of edges representing relations between entities
 - e.g., (Arica, flight, Santiago)

Data Graphs Graph Models - Directed Edge-Labelled Graph (cont'd)

э

A D N A B N A B N A B N

• Resource Description Framework

- W3C recommendation
- Internationalized Resource Identifiers
 - * Global identification of entities on the Web
- Literals
 - * Representation of datatypes (e.g., integers, dates, etc.)
- Blank nodes
 - * Nodes without identifiers

Definition

A named graph is a pair (n, G) where G is a directed edge-labelled graph, and $n \in Con$ is a graph name. A graph dataset is a pair $D := (G_D, N)$ where G_D is a directed edge-labelled graph called the default graph and N is either the empty set or a set of named graphs $\{(n_1, G_1), \ldots, (n_k, G_k)\}$ (k > 0) such that $n_i = n_j$ if and only if i = j $(1 \le i \le k, 1 \le j \le k)$.

• Multiple graphs from different sources

- Example: Linked Data on the web
- Default graph
 - Does not have an identifier
- Named graphs
 - Each named graph is associated with an identifier

Data Graphs Graph Models - Graph Dataset

э

A D N A B N A B N A B N

Definition

A property graph is a tuple G := (V, E, L, P, U, e, I, p), where $V \subseteq Con$ is a set of node ids, $E \subseteq Con$ is a set of edge ids, $L \subseteq Con$ is a set of labels, $P \subseteq Con$ is a set of properties, $U \subseteq Con$ is a set of values, $e : E \to V \times V$ maps an edge id to a pair of node ids, $I : V \cup E \to 2^L$ maps a node or edge id to a set of labels, and $p : V \cup E \to 2^{P \times U}$ maps a node or edge id to a set of property-value pairs.

- I: assigns labels to nodes and edges
- p: assigns property-value pairs to nodes and edges
- Flexible data model

Data Graphs Graph Models - Property Graphs (cont'd)

Property graph

• Directed edge-labelled graph

< (T) > <

RDF

- SPARQL
- Property graphs
 - Cypher
 - Gremlin
 - G-Core

• Different models - similar underlying characteristics

- Graph patterns
- Complex graph patterns
- Navigational graph patterns

- Core of every graph query language
- Follow the same model as the target data graph
 - Terms of the graph (e.g., nodes) can be variables
- Mappings from variables to constants
 - Table of results
- Semantics
 - Homomorphism-based: multiple variables can be mapped to the same term
 - Isomorphism-based: variables are mapped to unique terms

- Combination of result tables using relational algebra
- Operators
 - Unary (e.g., projection (π) , etc.)
 - Binary (e.g., union (\cup), join (\bowtie), etc.)
- Semantics:
 - Bag: allow duplicate results
 - Set: remove duplicate results (DISTINCT keyword)

- Combination of graph patterns and regular path queries
- Regular path query: (x, r, y)
 - r: path expression, arbitrary-length paths between two nodes
 - * r, base path expression
 - * r^{*}, zero-or-more paths
 - * r⁻, inverse path
 - * $r_1|r_2$, disjunction of paths
 - * $r_1 \bullet r_2$, conjunction of paths

• Example, regular path query: (Arica, bus*, ?city)

• Example, navigational graph pattern

?event	?name	?city
EID15	Ñam	Santiago
EID16	Food Truck	Arica
EID16	Food Truck	Viña del Mar

Schema, Identity, Context

- (日)

æ

- From data graphs to knowledge graphs
- Schema
 - Prescribes a high-level structure and/or semantics
 - Semantic
 - Validating
 - Emergent
- Identity
 - Node disambiguation
- Context
 - Scope of truth

- Defines the meaning of high-level terms
 - Classes
 - Properties (i.e., semantics of edge labels)
- RDF graphs
 - RDF Schema (RDFS)
 - * Subclasses, subproperties, domain, range
 - Web Ontology Language (OWL)
 - * In-depth semantics
- Defined for incomplete data graphs
 - Closed World Assumption vs Open World Assumption

Schema, Identity, Context Schema - Validating

- Defines semantic constraints on a data graph
- Shape
 - Specify constraints on a set of nodes
 - Closed shapes vs open shapes
- Shape languages
 - Shape Expressions (ShEx)
 - Shapes Constraint Language (SHACL)

Schema, Identity, Context Identity

- Persistent identifiers
 - Avoid naming clashes
 - e.g., IRIs in RDF graphs
- External identity links
 - Disambiguation w.r.t. external sources
 - Connected nodes represent the same entity
 - e.g., owl:sameAs:
- Datatypes
- Lexicalisation
 - Human-interpretable label for nodes (e.g., rdfs:label)
 - Easier to recognize real-world entities
- Existential nodes
 - Represent incomplete information (e.g., RDF's blank nodes)

Thank you

Note: The images are taken from the paper https://arxiv.org/pdf/2003.02320.pdf