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1. Preliminaries
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Preliminaries

• Manifold: A manifold is a topological space of which each point’s neighborhood
can be locally approximated by 𝑅!

• Tangent Space: The tangent space 𝑇"𝑀 of 𝑀 at p is a 𝑛-dimensional vector
space approximating M around p

• Geodesics: Geodesics is the the 
generalization of a straight line in the 
Euclidean space. 
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Curvature

• Curvature: how geometric object deviates from a flat one
• Gaussian Curvature: the product of its two principal curvatures

• Sectional Curvature: A local Gaussian curvature defined on the tangent
space of point p (the flat plane is the tangent space)

Weber, Melanie, and Maximilian Nickel. "Curvature and Representation Learning: Identifying Embedding Spaces for Relational 
Data." NeurIPS Relational Representation Learning (2018).
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Constant (Sectional) Curvature Manifold (CCM)

Weber, Melanie, and Maximilian Nickel. "Curvature and Representation Learning: Identifying Embedding Spaces for Relational 
Data." NeurIPS Relational Representation Learning (2018).
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Lorentz Model

• The Lorentz model 𝐿! of an 𝑛-dimensional hyperbolic space is a 
manifold embedded in the 𝑛-dimensional Minkowski space. 
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Poincare Ball Model

• The Poincare Ball model 𝐵! is given by projecting each point of
𝐿! on to the hyperplane 𝑥"=0
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2. Hyperbolic Embeddings
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Hyperbolic Embeddings for Tree-like data



• Vector operations: multiplications, addition, etc.

• Neural operations: pooling function, concatenation, etc.

Hyperbolic Embedding—Operations

• Exponential map

• Logarithm map
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• Moving the operations into the tangent space



• Matrix multiplication (e.g. neural transformation)

Operations
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• Addition (e.g. TransE)

Parallel Transport
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3. Embeddings Graphs with Mixed Geometries
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Embeddings Graphs with Mixed Geometry

Barabási-Albert network Zachary’s karate club Knowledge Graphs
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Embeddings Graphs with Mixed Geometry

• Tree & Cycle in KGs
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Embeddings with Mixed Geometry



• Semi-Riemannian manifold fits graphs containing cycles and trees

Semi-Riemannian Embeddings
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• Space-like geodesic: sphere properties

• Time-like geodesic: hyperbolic properties

• Light-like geodesic: Euclidean properties
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Future Directions

• Applications
• GNNs , KG completions, NLP, Recommendation Systems, Computer

Vision, Clustering.
• More applications

• Theoretical
• Identifying the geometric prior for graphs
• Defining model-specific operations
• Defining operations directly on the manifolds
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• The metric g induces distance, angle

• The metric should be: 

• Riemannian manifold (M, g) is a smooth manifold 𝑀 ⊆ 𝑅! equipped with a 
metric g, a smoothly varying function defined on the tangent space

Riemannian manifold
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Constant Curvature Manifolds (CCM)

• 𝑆!": {𝑥 ∈ R#: 𝑥$% + 𝑥%%+…+ 𝑥"%=K (K>0)} • 𝐻!": {𝑥 ∈ R#: −𝑥$%+𝑥%%+…+ 𝑥"%=K (K<0)}

• Metric: Euclidean inner product
• < 𝑥, 𝑦 >!= 𝑥"𝑦"+𝑥!𝑦! +⋯+ 𝑥#𝑦#
• Positive curvature (K>0，1/K)

• Metric: Lorentz (Minkowski) inner product
• < 𝑥, 𝑦 >ℒ= −𝑥"𝑦"+𝑥!𝑦! +⋯+ 𝑥#𝑦#
• Negative curvature (K<0)
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