

IPVS – Institute for Parallel and Distributed Systems

Analytic Computing

Hyperbolic Embeddings

Bo Xiong Ph.D. Student Analytic Computing, IPVS University of Stuttgart

19.03.2021

Outline

- Preliminaries
- Hyperbolic Embeddings
- Embeddings Graphs with Mixed Geometries
- Future Directions

IPVS – Institute for Parallel and Distributed Systems

Analytic Computing

1. Preliminaries

Preliminaries

- Manifold: A manifold is a topological space of which each point's neighborhood can be locally approximated by Rⁿ
- **Tangent Space:** The tangent space T_pM of M at p is a n-dimensional vector space approximating M around p
- **Geodesics:** Geodesics is the the generalization of a straight line in the Euclidean space.

Curvature

- Curvature: how geometric object deviates from a flat one
- Gaussian Curvature: the product of its two principal curvatures

• Sectional Curvature: A local Gaussian curvature defined on the tangent space of point *p* (the flat plane is the tangent space)

Weber, Melanie, and Maximilian Nickel. "Curvature and Representation Learning: Identifying Embedding Spaces for Relational Data." *NeurIPS Relational Representation Learning* (2018).

Constant (Sectional) Curvature Manifold (CCM)

Table 1: Properties of model spaces with constant sectional curvature κ .			
	Euclidean \mathbb{R}^d	Spherical \mathbb{S}^d	Hyperboloid \mathbb{H}^d
Space	\mathbb{R}^{n}	$\{x \in \mathbb{R}^{n+1} : \langle x, x \rangle = 1\}$	$\{x\in \mathbb{R}^{n+1}: \langle x,x angle=-1, x_0>0\}$
$\langle u,v angle$	$\sum_{i=1}^n u_i v_i$	$\sum_{i=1}^n u_i v_i$	$-u_0v_0+\sum_{i=1}^nu_iv_i$
d(u,v)	$\sqrt{\langle u-v,u-v angle}$	$\arccos(\langle u,v angle)$	$\mathrm{arccosh}(-\langle u,v angle)$
Curvature	$\kappa = 0$	$\kappa = 1$	$\kappa = -1$
Sum of angles	π	$>\pi$	$<\pi$
Circle length	$C(r) = 2\pi r$	$C(r) = 2\pi \sin r$	$C(r) = 2\pi \sinh r$
Disc area	$A(r) = 2\pi r^2/2$	$A(r) = 2\pi(1 - \cos r)$	$A(r) = 2\pi(\cosh r - 1)$
Principle Curvatures			
Characteristic Graph			

Weber, Melanie, and Maximilian Nickel. "Curvature and Representation Learning: Identifying Embedding Spaces for Relational Data." *NeurIPS Relational Representation Learning* (2018).

Lorentz Model

• The Lorentz model L^n of an *n*-dimensional hyperbolic space is a manifold embedded in the *n*-dimensional Minkowski space.

$$\mathbb{L}^{n} = \{ x = (x_{0}, ..., x_{n}) \in \mathbb{R}^{n+1} : < x, x >_{\mathbb{L}} = -1, x_{0} > 0 \}$$
$$< x, y >_{\mathbb{L}} = x^{T} g^{L} y = -x_{0} y_{0} + \sum_{i=1}^{n} x_{i} y_{i}, x \text{ and } y \in \mathbb{R}^{n+1}$$

Poincare Ball Model

• The Poincare Ball model B^n is given by projecting each point of L^n on to the hyperplane $x_0=0$

$$\mathbb{B}^{n} = \{x \in \mathbb{R}^{n} : ||x|| < 1\}$$
$$\mathfrak{g}^{B} = \lambda_{x}^{2} \mathfrak{g}^{E} \qquad \lambda_{x} = \frac{2}{1 - ||x||^{2}}$$

IPVS – Institute for Parallel and Distributed Systems

Analytic Computing

2. Hyperbolic Embeddings

Hyperbolic Embeddings for Tree-like data

Hyperbolic Embedding—Operations

- Vector operations: multiplications, addition, etc.
- Neural operations: pooling function, concatenation, etc.
- Moving the operations into the tangent space

- Exponential map
- Logarithm map

Operations

• Matrix multiplication (e.g. neural transformation)

$$W \otimes^{K} \mathbf{x}^{H} \coloneqq \exp_{\mathbf{o}}^{K} (W \log_{\mathbf{o}}^{K} (\mathbf{x}^{H})),$$

$$\downarrow^{\chi \to \psi_{x \to \xi}(t)}$$

• Addition (e.g. TransE)

 $\mathbf{x}^{H} \oplus^{K} \mathbf{b} \coloneqq \exp_{\mathbf{x}^{H}}^{K}(P_{\mathbf{o} \to \mathbf{x}^{H}}^{K}(\mathbf{b})).$

Parallel Transport

IPVS – Institute for Parallel and Distributed Systems

Analytic Computing

3. Embeddings Graphs with Mixed Geometries

Embeddings Graphs with Mixed Geometry

Embeddings Graphs with Mixed Geometry

• Tree & Cycle in KGs

Embeddings with Mixed Geometry

 Solution: Learning Embedding in Product (Manifold) Space
 Product Manifold: Given a sequence of smooth manifolds, the product manifold space is defined as the Cartesian product of them.

$$d^2(p_1,p_2) = d^2_{H_1}(p_1,p_2) + d^2_{H_2}(p_1,p_2) + \ldots + d^2_{S_1}(p_1,p_2) + \ldots + d^2_E(p_1,p_2).$$

Semi-Riemannian Embeddings

• Semi-Riemannian manifold fits graphs containing cycles and trees

$$\Omega_{K=-1}^{1,2}: -x_1^2 - x_2^2 + x_3^2 = -1$$

- Space-like geodesic: sphere properties
- Time-like geodesic: hyperbolic properties
- Light-like geodesic: Euclidean properties

Future Directions

Applications

- GNNs, KG completions, NLP, Recommendation Systems, Computer Vision, Clustering.
- More applications
- Theoretical
 - Identifying the geometric prior for graphs
 - Defining model-specific operations
 - Defining operations directly on the manifolds

IPVS – Institute for Parallel and Distributed Systems

Analytic Computing

Thank you

Riemannian manifold

• Riemannian manifold (*M*, *g*) is a smooth manifold $M \subseteq \mathbb{R}^n$ equipped with a metric *g*, a smoothly varying function defined on the **tangent space**

$$g_{\mathbf{x}}: \mathcal{T}_{\mathbf{x}}\mathcal{M} \times \mathcal{T}_{\mathbf{x}}\mathcal{M} \to \mathbb{R}.$$

- The metric g induces distance, angle
- The metric should be:
 - (i) symmetric if g(v, w) = g(w, v) for all $v, w \in T_p M$;
 - (ii) **nondegenerate** if g(v, w) = 0 for all $w \in T_p M$ implies v = 0;
 - (iii) **positive definite** if g(v, v) > 0 for all $v \in T_p M \setminus \{0\}$.

Constant Curvature Manifolds (CCM)

- S_K^n : { $x \in \mathbb{R}^n$: $x_1^2 + x_2^2 + ... + x_n^2 = K$ (K>0)}
- Metric: Euclidean inner product
- $\langle x, y \rangle_2 = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$
- Positive curvature (K>0 , 1/K)

- H_K^n : { $x \in \mathbb{R}^n$: $-x_1^2 + x_2^2 + ... + x_n^2 = K$ (K<0)}
- Metric: Lorentz (Minkowski) inner product
- $< x, y >_{\mathcal{L}} = -x_1y_1 + x_2y_2 + \dots + x_ny_n$
- Negative curvature (K<0)