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Preliminaries

« Manifold: A manifold is a topological space of which each point’s neighborhood
can be locally approximated by R™

- Tangent Space: The tangent space T,,M of M at p is a n-dimensional vector
space approximating M around p

« Geodesics: Geodesics is the the
generalization of a straight line in the
Euclidean space.




Curvature

« Curvature: how geometric object deviates from a flat one

« Gaussian Curvature: the product of its two principal curvatures

Extremal directions curve One extremal direction Extremal directions curve

in opposite directions has zero curvature in the same directions
Negative Curvature Zero Curvature Positive Curvature

« Sectional Curvature: A local Gaussian curvature defined on the tangent
space of point p (the flat plane is the tangent space)

Weber, Melanie, and Maximilian Nickel. "Curvature and Representation Learning: Identifying Embedding Spaces for Relational
Data." NeurlPS Relational Representation Learning (2018). 5



Constant (Sectional) Curvature Manifold (CCM)

Table 1: Properties of model spaces with constant sectional curvature .

Euclidean R? Spherical S¢ Hyperboloid H*
Space R" {zeR™!: (z,2) =1} {zeR"':{z,z)=—1,20>0}
(u,v) S v 3o iy —uovo + D ;1 Ui
d(u,v) (u—v,u—v) arccos((u, v)) arccosh(—(u, v))
Curvature k=0 k=1 K=-—1
Sum of angles 7 > <m
Circle length  C(r) = 27r C(r) =2msinr C(r) = 2mwsinhr
Disc area A(r) = 2mr?/2 A(r) =2m(1 — cosr) A(r) = 2m(coshr — 1)

Principle
Curvatures

Characteristic
Graph

Weber, Melanie, and Maximilian Nickel. "Curvature and Representation Learning: Identifying Embedding Spaces for Relational
Data." NeurlPS Relational Representation Learning (2018).



Lorentz Model

* The Lorentz model L™ of an n-dimensional hyperbolic space is a
manifold embedded in the n-dimensional Minkowski space.

L" = {x = (x0,...,Xn) € R™ < x,x >p.= —1,x0 > 0}

n
<X,y >L= ngLy = —=XoYo + Zx,-yi,x and y € Rn+1

i=1




Poincare Ball Model

* The Poincare Ball model B™ is given by projecting each point of
L™ on to the hyperplane x,=0

B" ={x e R" : ||x|]| < 1}

o =26" A=
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Hyperbolic Embeddings for Tree-like data
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Hyperbolic Embedding—Operations

* Vector operations: multiplications, addition, etc.

* Neural operations: pooling function, concatenation, etc.

* Moving the operations into the tangent space

« Exponential map

* Logarithm map

11



Operations

« Matrix multiplication (e.g. neural transformation)

W " x" = exp (Wlogh (x)),

 Addition (e.g. TransE)

x &K b := expfu (PX, _x(b)).

Parallel Transport

12
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Embeddings Graphs with Mixed Geometry

(a) Cycle (b) Tree (c) Cycle-Tree (balanced)
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Embeddings Graphs with Mixed Geometry

* Tree & Cycle in KGs
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Embeddings with Mixed Geometry

e Solution: Learning Embedding in Product (Manifold) Space

Product Manifold: Given a sequence of smooth manifolds, the product
manifold space is defined as the Cartesian product of them.

05

Product Manifold = ..

Distance:

d*(p1,p2) = d (p1,p2) + d% (P1,p2) + ... + d (p1,02) + - .. + d%(p1,p2)-

16



Semi-Riemannian Embeddings

« Semi-Riemannian manifold fits graphs containing cycles and trees

1,2 2_..2 —
Op—_ 10 —x{—x3+x3=-

» Space-like geodesic: sphere properties
» Time-like geodesic: hyperbolic properties

 Light-like geodesic: Euclidean properties

17



Future Directions

« Applications

 GNNs , KG completions, NLP, Recommendation Systems, Computer
Vision, Clustering.

* More applications

* Theoretical
* Identifying the geometric prior for graphs
» Defining model-specific operations

» Defining operations directly on the manifolds

18
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Riemannian manifold

* Riemannian manifold (M, g) is a smooth manifold M € R™ equipped with a

metric g, a smoothly varying function defined on the tangent space
TxM

—

X

x : TxM X TxeM — R.

¥(1)
* The metric g induces distance, angle

* The metric should be:
(1) symmetric if g(v, w) = g(w, v) forall v, w € T, M,

(i) nondegenerate if g(v, w) = 0 for all w € T, M implies v = 0;
(iii) positive definite if g(v, v) > Oforallv € T,M \ {0}.
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Constant Curvature Manifolds (CCM)

Spi{x € R™ xZ + x2+...+ x2=K (K>0)}

HE: {x € R —xZ+x3+...+ x2=K (K<0)}

Metric: Euclidean inner product Metric: Lorentz (Minkowski) inner product

e <X,y >2=x1Y1tXY2 + 0+ XY * <X,y >p=—X1y1TXY2 + -+ XpYn
Positive curvature (K>0 , 1/K)

Negative curvature (K<0)
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